Defining cooperativity in gene regulation locally through intrinsic noise.

نویسندگان

  • M Maienschein-Cline
  • A Warmflash
  • A R Dinner
چکیده

Regulatory networks in cells may comprise a variety of types of molecular interactions. The most basic are pairwise interactions, in which one species controls the behaviour of another (e.g. a transcription factor activates or represses a gene). Higher-order interactions, while more subtle, may be important for determining the function of networks. Here, the authors systematically expand a simple master equation model for a gene to derive an approach for robustly assessing the cooperativity (effective copy number) with which a transcription factor acts. The essential idea is that moments of a joint distribution of protein copy numbers determine the Hill coefficient of a cis-regulatory input function without non-linear fitting. The authors show that this method prescribes a definition of cooperativity that is meaningful even in highly complex situations in which the regulation does not conform to a simple Hill function. To illustrate the utility of the method, the authors measure the cooperativity of the transcription factor CI in simulations of phage- and show how the cooperativity accurately reflects the behaviour of the system. The authors numerically assess the effects of deviations from ideality, as well as possible sources of error. The relationship to other definitions of cooperativity and issues for experimentally realising the procedure are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of cooperative binding on noise expression

The origin of stochastic fluctuations in gene expression has received considerable attention recently. Fluctuations in gene expression are particularly pronounced in cellular systems because of the small copy number of species undergoing transitions between discrete chemical states and the small size of biological compartments. In this paper, we propose a stochastic model for gene expression re...

متن کامل

Investigating the Effects of Exposure to Continuous White Noise on SLC26A4 Gene Expression Levels in Male Rat Cochlea

Background and purpose: Irreversible damage to the inner ear is known as noise-induced hearing loss (NIHL). Exposure to excessive noise can affect the expression of genes in molecules involved in development of NIHL. SLC26A4 gene or PDS is responsible for causing both syndromic and non-syndromic deafness and is located at DFNB site. The aim of this study was to investigate the expression level ...

متن کامل

Emergent bistability: effects of additive and multiplicative noise.

Positive feedback and cooperativity in the regulation of gene expression are generally considered to be necessary for obtaining bistable expression states. Recently, a novel mechanism of bistability termed emergent bistability has been proposed which involves only positive feedback and no cooperativity in the regulation. An additional positive feedback loop is effectively generated due to the i...

متن کامل

Cooperativity in biological systems

Living organisms can sense and respond to external and internal stimuli. Response isdemonstrated in many forms including modulation of gene expression profiles, motility,secretion, cell death, etc. Nevertheless, all forms share a basic property: they depend on sensingsmall changes in the concentration of an effector molecule or subtle conformational changes ina protein and invoking the appropri...

متن کامل

Dynamics of cooperativity in chemical sensing among cell-surface receptors.

Cooperative interactions among sensory receptors provide a general mechanism to increase the sensitivity of signal transduction. In particular, bacterial chemotaxis receptors interact cooperatively to produce an ultrasensitive response to chemoeffector concentrations. However, cooperativity between receptors in large macromolecular complexes is necessarily based on local interactions and conseq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IET systems biology

دوره 4 6  شماره 

صفحات  -

تاریخ انتشار 2010